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The Reproduction Angular Error
for Evaluating the Performance of
Illuminant Estimation Algorithms

Graham D. Finlayson, Roshanak Zakizadeh
and Arjan Gijsenij

Abstract—The angle between the RGBs of the measured illuminant
and estimated illuminant colors - the recovery angular error - has been
used to evaluate the performance of the illuminant estimation algo-
rithms. However we noticed that this metric is not in line with how the
illuminant estimates are used. Normally, the illuminant estimates are
‘divided out’ from the image to, hopefully, provide image colors that
are not confounded by the color of the light. However, even though
the same reproduction results the same scene might have a large
range of recovery errors. In this work the scale of the problem with the
recovery error is quantified. Next we propose a new metric for evaluating
illuminant estimation algorithms, called the reproduction angular error,
which is defined as the angle between the RGB of a white surface
when the actual and estimated illuminations are ‘divided out’. Our new
metric ties algorithm performance to how the illuminant estimates are
used. For a given algorithm, adopting the new reproduction angular error
leads to different optimal parameters. Further the ranked list of best to
worst algorithms changes when the reproduction angular is used. The
importance of using an appropriate performance metric is established.

Index Terms—Illuminant estimation, color constancy, performance eval-
uation, error metric.
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1 INTRODUCTION

Wherever colors are used as stable cues for a vision task, we
wish to avoid any color bias due to illumination. To mitigate
this problem, illuminant estimation algorithms infer the
color of the light. Then, at a second stage the light color
is removed (divided out) from the image. If an illuminant
estimate is accurate then any color bias due to illumination
is removed. The question of which algorithm works best is
a key concern not only for those designing the algorithms,
but also for those using them.

To measure the performance of an illuminant estimation
algorithm, usually a set of images is agreed on as a bench-
mark (e.g. SFU Lab [1], Gehler-Shi colorchecker [2], [3], grey-
ball [4], NUS [5] datasets, etc.). The RGB of the estimated
light is then compared with a ground-truth measured illu-
minant. The recovery angular error - the angle between the
RGBs of the actual and estimated lights - is often used to
quantify the illuminant estimation error [6], [7]:

errrecovery = cos−1(
(ρE · ρEst)
‖ρE‖‖ρEst‖

), (1)

where ρE denotes the RGB of the actual measured light,
ρEst denotes the RGB estimated by an illuminant estimation
algorithm and ‘.’ denotes the vector dot product. Over a
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Fig. 1. An example of similar color corrected images with varying re-
covery angular error. (a) First row: images of the same scene cap-
tured under chromatic illuminants (from SFU dataset [1]). Second row:
corrected images using grey-world algorithm [8]. (b) Recovery versus
Reproduction angular errors.

data set summary statistics such as the average, median and
quantile angular errors are calculated and algorithms are
ranked according to these statistics.

In this paper, we show that the recovery angular error
has a fundamental weakness. A visual illustration of the
problem with recovery angular error is shown in Fig. 1. In
the top row of Fig. 1, three images of the same scene form
the SFU Lab dataset [1] are shown, which were captured
under different chromatic illuminations. The RGB color of
the illuminant for each scene is then estimated using the
simple grey-world algorithm [8] and then we divide the
image RGBs by this estimate to remove the color bias
due to the illumination. The results of ‘dividing out’ are
shown in the second row of the same figure. In part (b)
of Fig. 1 we plot the recovery angular errors (open circles).
Counter-intuitively, even though the output reproductions
are similar the recovery error ranges from 5.5 to 9.5 degrees.

In this paper, we introduce a new illuminant estimation
error metric, which we call reproduction angular error.
Reproduction angular error measures the angle between the
reproduction of a true achromatic surface under a white
light ([1 1 1]t) with the actual reproduction of an achromatic
surface when an estimated illuminant color is divided out.
The reproduction error is tied to how illuminant estimations
are used and by design gives a similar error for the same
scene reproduction, regardless of the illuminant color. In
Fig. 1 (b) we show the reproduction errors (filled circles)
and see they are much more stable than the recovery errors.

Our paper begins by calculating how large and small
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the mismatch between recovery errors and the images re-
produced can be. We adopt the so-called diagonal model of
illuminant change [9] and then, relative to this assumption,
we solve for the illuminants that respectively induce the
maximum and minimum recovery angular errors. We show
that red, green and blue ‘pure’ lights lead to 0 errors. Cyan,
yellow and magenta lights induce maximum error.

In order to observe the effect that the choice of error met-
ric has on the ranking of algorithms and on their evaluation,
we re-evaluated a large number of illuminant estimation
algorithms over multiple benchmark datasets such as: SFU
Lab [1], Gehler-Shi colorchecker [2], [3] and Grey-ball [4],
using both recovery and the proposed reproduction angular
errors. We have also evaluated a set of algorithms on the
National University of Singapore [5] dataset.

In Section 2, we discuss illuminant estimation. In Sec-
tion 3, the recovery angular error is presented and its range
of variation is determined for a given illuminant estimation
algorithm and a given scene. We present the reproduction
angular error in Section 4. Section 5 discusses the evaluation
of a large number of illuminant estimation algorithms. We
summarize the paper in Section 6.

2 ILLUMINANT ESTIMATION

A simple model of image formation [10] that we often use
when discussing illuminant estimation is given in (2).

ρE,Sk =

∫
ω

Rk(λ)E(λ)S(λ)dλ k ∈ {R,G,B}. (2)

Here ρE,Sk is the integrated response of a sensor to light
and surface. There are R, G and B sensor channels. The
spectral power distribution illuminating a scene is denoted
as E(λ), S(λ) is the surface spectral reflectance and the
light reflected is proportional to the multiplication of the
two functions. The light is then sampled by a sensor with
a spectral sensitivity R(λ) and integrated over the visible
spectrum ω.

Almost all illuminant estimation algorithms solve for the
R, G and B responses for the illuminant which is defined as:

ρEk =

∫
ω

E(λ)Rk(λ)dλ. (3)

Similarly we might write the surface response as:

ρSk =

∫
ω

S(λ)Rk(λ)dλ. (4)

The response to light and surface together can be calculated
as:

ρE,Sk = ρEk ρ
S
k . (5)

Assuming (5) holds and assuming an illuminant estimation
algorithm provides a reasonable estimate of the light color
(ρEst), then we solve for ρSk (remove color bias due to
illumination), by dividing out:

ρE,S

ρEst
≈ ρS , (6)

where the division of the vectors is component-wise.

An unknown light E′ can be simulated by multiplying
the actual light E by a 3-vector d:

ρE
′,S = d ∗ ρE,S d = [α β γ]t α, β, γ ≥ 0 (7)

Now let us assume that the illuminant of the scene is
estimated as a statistical moment of the image RGB values
for an N-pixel image. We write:

ρEst = moment({ρE,S1 , ρE,S2 , ..., ρE,SN }). (8)

Combining (7) and (8):

d ∗ ρEst = moment({ρE
′,S1 , ρE

′,S2 , ..., ρE
′,SN }). (9)

Equation (9) teaches that if two lights are related by 3 scaling
factors d then the statistical moment estimates shift by the
same scaling factors. Equation (9) is true for most illuminant
estimation algorithms including all those that can be written
in the Minkowski-framework [11]:(∫

|
δnρ(x)

δxn
|pdx

)1/p

= kρEst
n,p,σ

. (10)

Here the 3-vector ρ(x) is the camera response at location x of
an RGB image. The image can be smoothed with a Gaussian
averaging filter with standard deviation σ pixels and then is
differentiated with an order n differential operator. We then
take the absolute Minkowski p-norm average [12] over the
whole image. The unknown value k represents the fact that
it is not possible to recover the true magnitude of the illumi-
nants. The σ and p-norm are the tunable parameters which
can be chosen so that the algorithms perform their best. The
grey-world, MaxRGB [13] and grey-edge [11] algorithms are
all instantiations of the Minkowski-framework.

For a full survey of illuminant estimation algorithms the
reader is referred to [14].

3 THE RANGE OF RECOVERY ANGULAR ERROR

Assuming the diagonal model of illumination change we
show how to solve for the illuminant that results in the
largest recovery angular error.
Theorem 1. Given a white reference light (the RGB of the

light is U = [1 1 1]t) and denoting the illumination
estimate made by a ‘moment type’ illuminant estimation
algorithm as µ = [µr µg µb]

t then the illuminant that
maximizes recovery angular error is an illuminant with
0 in exactly one of the either R, G or B channels.

From Theorem 1 and because the recovery error is inten-
sity independent we can, without loss of generality, set one
of the illuminant parameters to 1 and another to 0.
Lemma 1.1. Assuming di = 1 and dj = 0 then dk = µi/µj

(where i 6= j 6= k).

In other words, Theorem 1 and Lemma 1.1 combined
state lights which are cyan, magenta and yellow maximize
the recovery angular error. Conversely, pure red, green and
blue lights result in the lowest angular error. In the limit
lights which have two of the components tending towards
0 will, for all moment-type algorithms, result in a recovery
angular error which tends towards 0. For a complete proof
of Theorem 1 and Lemma 1.1 we refer the reader to [15].
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Fig. 2. 2D chromaticity gamut (solid line) bounding the set of SFU Lab
dataset’s measured illuminants [1].

3.1 Maximum recovery angular error for real lights

In reality, lights that induce a 0-response in the R, G or
B channels are almost never encountered. This raises the
question of whether we can revise Theorem 1 to cover more
likely illuminants. Given that real lights are bounded to a
restricted gamut area, what can we say about the range of
recovery angular error? In Fig. 2 we plot on a rg chromaticity
diagram the chromaticities of the lights from the SFU Lab
dataset [1] (where [r,g,1-r-g] has the same orientation as the
RGB of the light). Notice that the range of lights is really
quite restricted and is far from allowing either pure red,
green and blue lights or pure cyan, magenta or yellow.
Our second theorem teaches where local maxima should lie
when lights lie in a bounded region of chromaticity space.

Theorem 2. The maximum recovery angular error for a
convex combination of a set of measured lights, belongs
to a light which falls on the border of the convex set.

Proof: According to Theorem 1, for a given image and
a given illuminant estimation algorithm, there are - when
there are no restrictions on the color of the illuminant -
three possible lights that result in local error maxima (one
of which induces the overall maximum error). Further all
three local maxima have one of R, G or B equal to 0. Let us
assume now that for the restricted illuminant case - lights
must lie within a convex region - that the light that induces
the maximum error does not lie on the boundary of the
convex set. As a consequence this light must be a local
maximum. Further because this is an interior point of the
set of illuminants all three components, R, G and B must
be non-zero. It also follows that this illuminant must also
be a local maximum even when the constraint on where the
illuminant can lie is removed. By Theorem 1 this cannot be
the case because all local maxima for the unrestricted case
have one component of the RGB vector equal to 0. We have
a contradiction and so the maximum error for a constrained
convex set of lights must be on the boundary of the set.

Theorem 2 is important because it teaches that we can
find the light resulting in the maximum recovery angular
error, belonging to a set of feasible lights, by searching the
boundary of the feasible set.

4 REPRODUCTION ANGULAR ERROR: AN IM-
PROVEMENT OVER RECOVERY ANGULAR ERROR

In very simple words, reproduction angular error is the an-
gle between true white and estimated white (white surface
under unknown light mapped to reference light using an
illuminant estimate.). Remembering we cannot recover the
absolute brightness of the light, we define the Reproduction
Angular Error [15] - our new metric for assessing illuminant
estimation algorithms - as:

errreproduction = cos−1
(
wEst.w

)
, (11)

where wEst =
ρE/ρEst

|ρE/ρEst| (reproduced color of white surface)

and w =
ρE/ρE
√
3

(true color of white surface).
According to the RGB model of image formation in Sec-
tion 2, the RGB values in the image are scaled by the same
three weighting factors as the illumination changes [16]. The
reproduced image after color correction, is the image from
which the estimated illuminant is ‘divided out’, so that the
color bias due to illumination is removed. The color bias is
removed from the images as is explained by (6):

ρE

ρEst
≈ U =

ρE

ρE
. (12)

Theorem 3. Given a single scene viewed, separately, under
two lights. The reproduction error of the estimated light
by a ‘moment type’ illuminant estimation algorithm is
the same.

Proof: For a chromatic light defined with d = [α β γ]t

[see (7)], using the fact presented in (8), the reproduction
angular error (11) can be written as:

errreproduction = cos−1
( α
αµr

+ β
βµg

+ γ
γµb

)√
( α
αµr

)2 + ( β
βµg

)2 + ( γ
γµb

)2
∗ 1√

3
.

(13)
It can be seen easily in (13), that the scaling factors α, β
and γ (which caused the illumination changes) cancel. The
reproduction error is stable regardless of the color of the
light.
In Fig. 3(a), the two purple curves are the cumulative prob-
ability distribution functions of the analytical maximum
recovery errors for the two algorithms: grey-world [8] (solid
line) and pixel-based gamut mapping [17] (dashed line)
algorithms for 321 images of SFU Lab dataset.

The blue curves represent the cumulative probability
functions of the maximum recovery angular errors for an
example of the real lights (see Theorem 2.) (in this case these
lights are within the convex combination of the measured
illuminants of SFU Lab dataset [1]). The red curves in the
same figure are the actual recovery angular errors of the
estimated illuminant using the two grey-world [8] (solid
line) and pixel-based gamut mapping [17] (dashed line)
algorithms applied on SFU Lab dataset.

In terms of the maximum angular error Fig. 3 (a) teaches
that grey-world, in the worst case, performs about the same
as gamut mapping. This is a surprising result as gamut
mapping is a much more complex algorithm and is assumed
to perform better. Note also that for real lights the worst
case error is still worse for grey-world but the worst-case
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Fig. 3. (a) Cumulative probability distribution function of analytical maxi-
mum recovery angular errors (in magenta), maximum error of real lights
within the convex of SFU Lab dataset’s [1] measured illuminants (in
blue) and the recovery angular errors of the estimated lights of 321 SFU
Lab images using the two algorithms (in red). (b) Cumulative probability
distribution function of maximum reproduction angular errors [15]

for pixel based gamut mapping is similar to the actual
performance (though, still significantly different especially
for the higher quantile errors).

In Fig. 3 (b) we show the reproduction angular error for
grey-world and pixel-based gamut mapping. This error is
stable across illumination changes. Fig. 3 (b) informs us
- what we knew - that for all lights pixel-based gamut
mapping works better than grey-world.

Another way of articulating the benefits of reproduc-
tion error is that it is ‘skew’ invariant. That is under the
diagonal (or indeed linear) model of illuminant change the
colors ‘skew’ from one light to another. Other formulations
‘diagonal’ skew invariants can be made e.g. ρEst/ρE or
norm(log(ρEst/ρE)). However, the former effectively mea-
sures the reproduction error assuming the illuminant is ac-
tually what we estimated and is corrected with - for the pur-
poses of this example - the ‘wrong’ actual light. The normal
- as oppose to this inverse - reproduction error makes more
sense. The latter skew invariant measure is derived from
the normal reproduction error. We remark that any function
of the reproduction error will also be skew invariant. And

as it follows from the derivation of reproduction angular
error (see Theorem 3) that the same scene+algorithm pair
will return the same reproduction error for all lights if the
algorithm is skew invariant or so-called ‘moment-based’ i.e.
if the illuminant change is modeled by the diagonal matrix
d the moment type estimate also maps by the same i.e.
d ∗ ρ. An avenue for future research is to assess how well
reproduction error - and other skew invariants - correlate to
judgements made by human observers.

The relative performance of different algorithms based
on reproduction and recovery angular error with a more
realistic case study has also been discussed in [18].

4.1 The Reproduction Error for a non-diagonal illumi-
nant model

The efficacy of a diagonal model of illuminant change is
strongly related to the spectral shape of the sensors. The
more bandlimited, or narrow, the sensitivities the more
applicable the diagonal model. The majority of commercial
photographic cameras have narrow band sensors and, to
our knowledge, the illuminant is discounted by applying
the diagonal model. However, there are exceptions such
as the Sigma range of sensors where their X3 sensing
technology [19] results in broad sensitivities. Thus, it is
an interesting question to consider whether reproduction
angular error can be applied more widely.

First we note that even when a diagonal model of illu-
minant change does not hold it can often be made to hold
via a change in sensor basis. With respect to this new sensor
basis [20], [21] the reproduction error can be used directly.

More generally, an illuminant estimate can be used to
parametrize a 3 × 3 correction matrix [22]. For example,
given finite dimensional approximation of light and sur-
faces when given estimated RGB of light ρEst the function
M(ρEst) returns a 3 × 3 matrix which maps image colors
- where the illuminant is ρEst - to a reference [1 1 1]
e.g. [10]. That is we substitute wEst = M(ρEst)ρE into
(11). In fact we can be more general still. In [23], Forsyth
introduces the function ψ(ρ; ρEst) the meaning of which
is the RGB ρ mapped to a reference lighting condition
using the light estimation ρEst. Adopting this idea we can
substitute wEst = ψ(ρE ; ρEst) into (11) and so arrive at
even more general form of reproduction error.

Reproduction error is generalized to encompass more
reflectances in [24], [25]. Importantly, [24] found that simple
reproduction angular error could be used as a proxy for
calculation based on many reflectance.

5 EXPERIMENTS

Gijsenij et al. [14] carried out a comprehensive evaluation
of a large selection of illuminant estimation algorithms
using recovery angular error. In this section we revisit
their experiments for the SFU Lab dataset [1]. The SFU
data has 30 objects under up to 11 lights. This makes it
ideal for our purpose because for these lights reproduction
error should be similar but recovery error will vary. We
also wish to consider illuminant estimation performance for
the recent NUS dataset [5] which comprises a large set of
typical photographic pictures captured with a wide range
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TABLE 1
Recovery and Reproduction errors in terms of median and 95% quantile for several color constancy algorithms applied on SFU dataset [1]. The

ranks for some algorithms have changed based on the two error calculations. There are also changes in the optimal parameters.

Recovery error Reproduction Error
Method p σ Median Rank p σ 95% Rank p σ Median Rank p σ 95% Rank
Grey-world - - 7◦ 11 - - 30.3◦ 11 - - 7.5◦ 11 - - 28◦ 11
MaxRGB - - 6.5◦ 10 - - 27.2◦ 10 - - 7.4◦ 10 - - 27.2◦ 10
Shades of grey 7 - 3.7◦ 9 4 - 18.7◦ 9 7 - 3.9◦ 8 3 - 19◦ 8
1st order grey-edge 7 4 3.2◦ 7 2 1 14.3◦ 6 14 4 3.58◦ 6 2 1 15.6◦ 6
2nd order grey-edge 14 10 2.7◦ 4 2 2 14.2◦ 5 15 10 3◦ 4 2 2 15.1◦ 5
Pixel-based gamut [17] - 4 2.26◦ 2 - 6 9.8◦ 1 - 4 2.8◦ 3 - 7 11.1◦ 1
Edge-based gamut - 2 2.27◦ 3 - 2 12.6◦ 3 - 2 2.7◦ 2 - 2 14.3◦ 4
Inter-based gamut - 4 2.1◦ 1 - 6 9.8◦ 1 - 3 2.5◦ 1 - 7 11.2◦ 2
Union-based gamut - 2 3◦ 5 - 3 12.8◦ 4 - 2 3.4◦ 5 - 3 13.2◦ 3
Heavy tailed-based [26] - - 3.5◦ 8 - - 15.9◦ 7 - - 4.1◦ 9 - - 16.6◦ 7
Weighted grey-edge 2 1 3.1◦ 6 2 1 18◦ 8 2 1 3.62◦ 7 2 1 19.3◦ 9

TABLE 2
Recovery and Reproduction errors in terms of max and 95% quantile for several algorithms applied on Canon1D camera from NUS dataset [5].

Recovery error Reproduction Error
Method p σ Max Rank p σ 95% Rank p σ Max Rank p σ 95% Rank
Grey-world - - 22.37◦ 5 - - 12.78◦ 4 - - 24.69◦ 4 - - 16.19◦ 4
MaxRGB - - 39.12◦ 7 - - 17.28◦ 7 - - 33.76◦ 6 - - 18.14◦ 6
Shades of grey 5 - 14.62◦ 2 5 - 9.01◦ 1 5 - 18.41◦ 3 8 - 11.71◦ 2
1st order grey-edge 7 9 14.08◦ 1 7 2 9.09◦ 2 5 3 17.35◦ 1 9 2 11.50◦ 1
2nd order grey-edge 4 10 15.00◦ 3 3 5 9.12◦ 3 5 4 17.91◦ 2 1 2 12.09◦ 3
Pixel-based gamut - 0 38.60◦ 6 - 0 16.64◦ 6 - 0 35.52◦ 7 - 0 18.45◦ 7
Edge-based gamut - 5 21.64◦ 4 - 3 13.01◦ 5 - 5 27.60◦ 5 - 3 16.37◦ 5

of commercial cameras. Here we do not have access to the
whole set of algorithms used in the original study [14] by
Gijsenij et al. (indeed, the performances supplied there for
the datasets were contributed by many authors (including
the recent methods [27], [28], [29], [30]) i.e. there is not
a complete code repository). So, for the NUS dataset we
evaluate the Minkowski family of algorithms (10) as well as
pixel-based and edge-based gamut mapping [17], [23].

Table 1 reports the recovery and reproduction median
and 95% quantile angular errors for the SFU Lab dataset [1].
The SFU Lab dataset comprises a set of 321 images cap-
tured under relatively chromatic lights (we adopt the same
algorithm naming conventions used by Gijsenij [14]). The
p and σ values shown in the table (the tunable parameters
(see (10))) provide the lowest angular error for an illuminant
estimation algorithm and the error statistic being used (e.g.
median or 95% quantile). Notice that using recovery vs
reproduction angular error and median vs 95% quantile we
end up with different optimal p and σ values.

For each of the four test scenarios (Recovery vs Angular
error for the median and 95% quantile statistic) we also
show the rank of the different algorithms. We remark that it
is possible for two algorithms, to the precision tested, to
have the same performance (according to the median or
95% quantile) and so these algorithms will have the same
rank. In bold and underlined we highlight the algorithms
whose ranks change. Here we compare the performance
measured according to the same statistical measure but
for the recovery vs reproduction angular error. That is, we

compare the ranks of the 1st and 3rd columns and the 2nd

and 4th columns (respectively, the median angular error and
95% quantile). These highlighted rank changes also include
the case where two algorithms have delivered the same
performance for one error metric (and are assigned the same
rank) but different for the other metric. We highlight one
occasion where it happens below.

Table 2 reports the recovery and reproduction max and
95% quantile angular errors for NUS dataset [5] which
consists of 1736 images from 8 different cameras. Here we
are reporting the results for one of the cameras, Canon1D.

Looking at Table 1 and Table 2, we make two obser-
vations. Firstly, using reproduction angular error there are
clearly changes in the ranking of algorithms. Although the
overall ranking of illuminant estimation algorithms remains
similar (e.g. gamut mapping algorithms still perform the
best for the SFU dataset), but the local rank of different
algorithms can swap. For example, based on median errors,
the pixel-based gamut-mapping algorithm is better than the
derivative-based counterpart for the SFU dataset for the
recovery angular error but the converse is true when the re-
production angular error is used. We also notice the tunable
parameters for an algorithm can change if the reproduction
angular error is used for evaluation of the algorithm.

The Kendall’s test statistic T [31] can give us a measure
of correlation between pairs of ranks. A pair of unique
observations (x1, y1) and (x2, y2) are said to be discordant
if the ranks of the two elements (x1, x2) and (y1, y2) do not
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TABLE 3
Changes in ranking of algorithms for SFU Lab dataset [1] (based on

median errors).

Median

Method Reproduction
Rank

Recovery
Rank C D

Edge-based gamut 1 2 4 1
Pixel-based gamut 2 1 4 0
1st order grey-edge 3 4 2 1
Weighted grey-edge 4 3 2 0
shades of grey 5 6 0 1
Heavy tailed-based 6 5 0 0
T quantile for 6 samples at 99.5% confidence = 13 >(T = 9)

agree, otherwise the pair are concordant. T is defined as:

T = C −D, (14)

where C is the number of concordant pairs and D is the
number of discordant pairs. If y1 = y2 while x1 6= x2 we call
it a tie. In case of a tie the pair is counted as 1/2 concordant
and 1/2 discordant, although as it is obvious by (14), this
makes no difference in our final Kendall’s T value.

To study the discordance in ranking of the algorithms,
we perform the Lower-Tailed Kendall’s Test [31], which is
defined as follows:
Lower-Tailed Test

H0 : X and Y are independent. This means the pairs of
data are neither discordant nor concordant.

H1 : Pairs of data tend to be discordant.
Reject null hypothesis (H0) at α% confidence level if T is
less than its quantile at this confidence level in the null
distribution. The T quantile at different confidence levels
for n ≤ 60 can be looked up in table of the quantiles for
the Kendall’s test in [31]. For instance, if the null hypothesis
(H0) is rejected at 95%, this means we can say that the pairs
of data tend to be discordant with 95% confidence. 2

We are interested in measuring the discordancy (or oth-
erwise) for the algorithms whose ranks change. The number
of algorithms where the ranks change depends both on
the error measure used (median or 95% quantile) and the
dataset (SFU Lab and NUS). Thus we measure concordant
and discordant pairs for 6, 6, 6 and 4 algorithms for respec-
tively the error measure and dataset pairs: (median, SFU
Lab), (95% quantile, SFU Lab), (max, NUS) and (95% quan-
tile, NUS). Respectively, the data for these pairs are recorded
in Tables 3 through 6. Breaking down the calculations,
for instance in Table 3 (median error and for the SFU Lab
dataset), in total there are 12 concordant and 3 discordant
pairs of ranking which result in T = 12−3 = 9. This T value
is then compared with its quantile, which in this case is 13
at 99.5 % confidence level. Based on the comparison made,
the null hypothesis (H0) in the Lower-Tailed Kendall’s test is
rejected and it concludes that the pairs tend to be discordant.
That is the ranks of the algorithms are significantly different.
Similarly, for Table 4 (SFU Lab dataset and the 95% quantile
error) we find the 6 algorithms (whose ranks change) are
ranked differently (at a 99.5% confidence level). In this table,
the algorithms with the same rank given based on 95%
quantile recovery error are also included.

TABLE 4
Changes in ranking of algorithms for SFU Lab dataset [1] (based on

95% quantile errors).

95% quantile

Method Reproduction
Rank

Recovery
Rank C D

Pixel-based gamut 1 1 4.5 0.5
Inter-based gamut 2 1 4 0
Union-based gamut 3 4 2 1
Edge-based gamut 4 3 2 0
shades of grey 5 6 0 1
Weighted grey-edge 6 5 0 0
T quantile for 6 samples at 99.5% confidence = 13 >(T = 10)

TABLE 5
Changes in ranking of algorithms for Canon1D camera from NUS

dataset [5] (based on max errors).

Max

Method Reproduction
Rank

Recovery
Rank C D

2nd order grey-edge 1 2 4 1
Shades of grey 2 1 4 0
Grey-world 3 4 2 1
Edge-based gamut 4 3 2 0
MaxRGB 5 6 0 1
Pixel-based gamut 6 5 0 0
T quantile for 6 samples at 99.5% confidence = 13 >(T = 9)

TABLE 6
Changes in ranking of algorithms for Canon1D camera from NUS

dataset [5] (based on 95% quantile errors).

95% quantile

Method Reproduction
Rank

Recovery
Rank C D

1st order grey-edge 1 2 2 1
shades of grey 2 1 2 0
MaxRGB 3 4 0 1
Pixel-based gamut 4 3 0 0
T quantile for 4 samples at 99.5% confidence = 6 >(T = 2)

Tables 5 and 6 report the ranking performance for the
NUS Canon1D dataset [4] from Table 2 where again we fo-
cus only on the algorithms whose ranks change. We wish to
measure how much the ranks change. Again the algorithms
in these two tables have changed in their ranking orders
when they were ranked using median and 95% quantile
reproduction angular errors respectively (see Table 2).

It can be seen that the null hypothesis (H0) in Lower-
Tailed Kendall’s test is rejected for all pairs of algorithms
in Tables 3 to 6, showing the fact that the ranking of these
algorithms using recovery and reproduction angular errors
are strongly discordant. A pictorial scheme of Kendall’s test
in Table 3 is shown in Fig. 4. It is interesting to notice that
according to recovery errors in this case edge-based gamut
mapping algorithm is followed immediately by weighted
grey-edge. Whereas, based on reproduction errors they are
two steps apart in the ranking table.

To further study the behaviour of two metrics on in-
dividual images we performed the Wilcoxon sign test [31]

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TPAMI.2016.2582171

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



7

Recovery angular error Reproduction angular error
0

1

2

3

4

5

6

7

ra
n

k
s

Pixel−based Gamut

Edge−based Gamut

Weighted Gray−Edge

1
st

 Gray−Edge

Heavy−tailed

shades of Gray

Pixel−based Gamut

Edge−based Gamut

Weighted Gray−Edge

1
st

 Gray−Edge

Heavy−tailed

shades of Gray

Fig. 4. The pictorial scheme of Kendall test for the changed rank algo-
rithms in Table 3 [15].

which allows us to show the statistically significance of the
difference between two algorithms [6]. In the Wilcoxon sign
test we can test the hypothesis that the median of algorithm
i is significantly lower than the median of algorithm j at
some confidence level.

The Wilcoxon sign test results for the algorithms in
Table 3 applied on SFU dataset are shown in Table 7. Here,
a positive value (green color) at location (i, j) indicates that
the median of algorithm i is significantly lower than the
median of algorithm j at the 90% confidence level. For
such a small set of objects (SFU set has 30 objects) 90%
confidence level is reasonable. The value (−1) (red color)
indicates the opposite and a zero (yellow color) shows
there is no significant difference between the performance
of two algorithms. As can be seen there are cases where
reproduction angular error interprets the significance of
difference between performance of two methods differently
from recovery angular error. For instance based on recovery
error there isn’t much difference between the performance
of Heavy tailed-based and 1st grey-edge but for reproduc-
tion error they are different. Or in case of 1st order grey-
edge and weighted grey-edge methods there is a complete
switch between the ranking of two algorithms. In summary,
the Wilcoxon sign test demonstrates that for images where
state of the art illuminant estimation algorithms performed
reasonably the recovery and reproduction errors ranked
these algorithms differently.

That the new reproduction angular error ranks algo-
rithms differently is a matter of considerable importance.
Indeed, not only do the absolute values change with respect
to the currently used recovery angular error, the relative
differences between the algorithms (the rank order of al-
gorithms) change as well. Especially this latter observation
is an important argument in favor of switching to the new
reproduction error instead of keep using the legacy recovery
error.

After all, if we wish to recognize colorful content in-
dependent of the illuminant color (i.e. we first remove the
color bias due to illumination by dividing out the illuminant
color [32]) then we need to adopt the new reproduction
angular error to measure the performance. More generally,
if illuminant estimates are used to discount color casts - this
is by far the main reason for estimating the illumination
- from images due to the prevailing illuminant color (for

TABLE 7
Wilcoxon sign test on SFU dataset for Recovery and Reproduction

errors of the algorithms in Table 3.
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1 0 -1 +1 +1 +1 +1 0 +1 +1 +1 +1 +1
2 +1 0 +1 +1 +1 +1 -1 0 +1 +1 +1 +1
3 -1 -1 0 -1 +1 0 -1 -1 0 +1 +1 +1
4 -1 -1 +1 0 +1 0 -1 -1 -1 0 +1 +1
5 -1 -1 -1 -1 0 0 -1 -1 -1 -1 0 0
6 -1 -1 0 0 0 0 -1 -1 -1 -1 0 0

recognition, tracking or navigation) then the new metric
should be used.

5.1 Multispectral Illuminant Estimation
Considering that illuminant estimation is the preprocessing
step to many computer vision tasks which mostly make
use of 3-band RGB images, most of our analysis have been
done on such benchmark datasets. However, one might find
the difference between recovery and reproduction angular
errors on a set of multispectral data applicable. Here we
repeat the same experiment on the images from Foster et al.
dataset [33]. The dataset consists of eight scenes captured
by a progressive-scanning monochrome digital camera. The
data is provided between 410 and 710 nm with 10 nm
intervals. We have assumed the lighting condition to be
under 6500 k illuminant. The recovery and reproduction
errors for four illuminant estimation algorithms applied on
the five of these 31-band images are presented in Table 8.

TABLE 8
Changes in ranking of algorithms for Foster et al. dataset [33] (based

on median errors).

Recovery Reproduction

Method Median
error Rank Median

error Rank C D

1st order grey-edge 7.18 1 7.50 2 2 1
2st order grey-edge 7.23 2 7.73 4 0 2
General grey world 7.26 3 6.08 1 1 0
Shades of grey 7.85 4 7.52 3 0 0
T quantile for 4 samples at 99.5% confidence = 6 >(T = 0)

In multispectral illuminant estimation, rather than the
actual and estimated light being three vectors they are
31-vectors. Relative to this 31 vectors the recovery and
reproduction errors are analogously defined. The reader will
notice the errors are higher. Intuitively, this is to be expected
as in 31-space there are more degrees of freedom. The
discrepancy between the ranking of reproduction versus
recovery error is even more marked for the multispectral
case.

6 CONCLUSION

In this paper, we propose the reproduction angular metric
as an improvement over the recovery angular error. The
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latter measure calculates the angle between the actual and
estimated lights whereas the former calculates the angle
between the actual true rgb for white surface and the es-
timated white. We showed that the recovery angular error
has the property that it varies widely for the same scene
viewed under different lights. This is surprising when we
factor in how the illuminant estimates are used: they are
used to balance a scene that has a colour cast due to the
prevailing light so that the color bias is removed. The new
reproduction error is stable for a fixed scene-algorithm pair.

The best ‘tuning’ parameters for different algorithms is
found to depend on the error metric used. Further we show
that the ranking of illuminant estimation algorithms while
broadly the same for recovery or reproduction angular error
can change for the local pairs of algorithms (e.g. pixel-based
and edge-based gamut mapping). The change in the ranks
is statistically significant.

Almost always, illuminant estimation algorithms pro-
vide estimates of the prevailing illuminant color which is
then removed from the image. The resulting reproduction
is the image used in computer vision processing for tasks
ranging from recognition to tracking to navigation. Not only
is our new reproduction angular error targeted towards
how illuminant estimation algorithms are used (as a pre-
processing step for other vision processing) but they rank
algorithms differently from the current recovery angular
error.
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[29] N. Banić and S. Lončarić, “Color dog: Guiding the global illumina-
tion estimation to better accuracy,” in International Joint Conference
on Computer Vision, Imaging and Computer Graphics Theory and
Applications, 2015.

[30] B. Li, W. Xiong, W. Hu, B. Funt, and J. Xing, “Multi-cue il-
lumination estimation via a tree-structured group joint sparse
representation,” International Journal of Computer Vision, vol. 117,
no. 1, pp. 21–47, 2015.

[31] W. Conover, Practical nonparametric statistics, Third Edition. John
Wiley & Sons, New York, 1999.

[32] B. Funt, K. Barnard, and L. Martin, “Is machine colour constancy
good enough?” in Proceedings of the European conference on computer
vision. Springer, 1998, pp. 445–459.

[33] D. H. Foster, K. Amano, S. M. Nascimento, and M. J. Foster,
“Frequency of metamerism in natural scenes,” Journal of the Optical
Society of America A, vol. 23, no. 10, pp. 2359–2372, 2006.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TPAMI.2016.2582171

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.


