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Abstract
Illuminant estimation algorithms are usually evaluated by

measuring the angular error between the RGB vectors of the es-
timated illuminant and the ground-truth illuminant (recovery an-
gular error). However, the recovery angular error reports a wide
range of errors for a given illuminant estimation algorithm and
a given scene viewed under multiple lights (despite the fact that
when the estimated lights are divided out the reproductions are
similar). Following this observation, the reproduction angular er-
ror was proposed which instead measures the angle between the
RGBs of a white surface being color corrected by dividing out the
estimated illuminant RGB and R=1, G=1 and B=1 (i.e. white if
the illuminant is correctly discounted). In this work we look at the
correlation between the two metrics for each individual algorithm
applied on a set of images. We observe that where the images are
from the same scene under different illuminations the recovery
and reproduction errors are often uncorrelated. Whereas when
the same algorithm is applied on the images of diverse scenes the
two errors are highly correlated.

Introduction
The appearances of colors in a scene captured by an imaging

device are affected by the illumination or illuminations prevailing
the scene. To discard the color bias due to the illuminant and,
thereby, produce a pleasant image as well as an applicable one
for many computer vision tasks, the illuminant color is estimated
using an illuminant estimation algorithm. In a second step the
estimated RGB values of light is divided out from the RGBs of
each pixel. The performance of an illuminant estimation algo-
rithm is often evaluated by measuring the angle between the two
RGB vectors of the ground-truth (Eact ) and the estimated (Eest )
illuminant using the recovery angular error:

errrecovery = cos−1(
Eact ·Eest
|Eact ||Eest |

) (1)

Recently, the conventional metric recovery angular error was
shown, counterintuitively, to introduce a wide range of errors for
the same scene and the same algorithm [1]. That is when the
scene is fixed and only the color of the light changes and when an
illuminant estimation algorithm provides estimates which when
the colour bias due to illumination is ‘divided out’ produces the
same reproduction (this turns out to be true for the majority of
illuminant estimation algorithms) a large range of recovery errors
can be reported (from 0 to over 40 degrees!)

To address this problem, a new metric [1] - reproduction an-
gular error - which measures the angle between the color of a
white surface after corrected by the estimated illuminant (i.e. the
reproduced white) and the ground-truth white RGB (the actual

light divided by itself) was proposed:

errreproduction = cos−1(
(Eact/Eact) · (Eact/Eest)√

3|Eact/Eest |
) (2)

Note, in Equation 2 the actual light divided by itself is simply
R=1, G=1 and B=1 (white looks right).

Reproduction angular error was shown to be more stable to-
wards changes in the illuminant when the scene is the same and
the same algorithm is used. Using the new metric, the ranking of
algorithms reported in the literature broadly remained unchanged
but a pairs of consecutively ranked algorithms could swap their
relative position. And, the best tuning parameters for individual
algorithms was shown to depend on the metric used.

In this paper we study the correlation between the reproduc-
tion and recovery errors for a given algorithm. We notice the low
correlation between the errors for the images where the scene is
the same and the only difference is in the illuminant. This is ex-
pected as the premise of reproduction error is that it is stable to
changes of illuminant (depends only on the algorithm) compared
to recovery error (which depends both on the illuminant and the
algorithm). On the other hand, we observe when the scenes are
diverse the results of reproduction and recovery metrics for the
same algorithm are very much correlated.

This is an important result as it establishes that the de-
velopment of illuminant estimation algorithms is in good order.
The best algorithms now are better than the antecedent methods
whether the legacy recovery or the new reproduction error is used.
However, the reproduction error adds to the state of the art be-
cause, in general, the same scene will be viewed under several
lights.

In Section 2 we discuss the assumptions underlying the re-
production error. A comparison between recovery and reproduc-
tion errors is being made in Section 3. In Section 4 we carry out
very simple correlation analysis comparing reproduction and re-
covery errors. A short discussion is included in Section 5. We
conclude the findings in Section 6.

Background: Formulation of Reproduction
Angular Error

Image formation is often formulated as [2]:

ρ
E,S
k =

∫
ω

Rk(λ )E(λ )S(λ )dλ k ∈ {R,G,B} (3)

Here E(λ ) is the spectral power distribution of light strik-
ing the objects with the surface reflectance of S(λ ). The light
reflected is proportional to E(λ ) and S(λ ) and it is sampled by a
sensor with spectral sensitivity of R(λ ) over visible spectrum (ω).



It is obvious from Equation 3 that light and surface play sym-
metrical roles in image formation and Equation 3 can be simpli-
fied as [3]:

ρ
S
k =

∫
ω

Rk(λ )S(λ )dλ ρ
E
k =

∫
ω

Rk(λ )E(λ )dλ (4)

and

ρ
E,S
k = ρ

S
k ∗ρ

E
k k ∈ {R,G,B} (5)

In color constancy we aim to recover ρS which is the color
of the surface under uniform light E(λ ) = 1.

According to this simplified image formation model, if the
illuminant is estimated as ρEst , then by ‘dividing out’ we can es-
timate the surface color:

ρE,S

ρEst ≈ ρ
S (6)

Implication of the simple model is that response across illu-
minants are related by a diagonal matrix:

ρ
E ′,S = diag(d)∗ρ

E,S d = [α β γ ] α,β ,γ > 0 (7)

Also, if illuminant estimation is viewed as a kind of statisti-
cal moment of RGB values of an image with N pixels:

ρ
Est = moment(ρE,S1 ,ρE,S2 , ...,ρE,SN ) (8)

From Equation 7 we can write:

d ∗ρ
Est = moment(ρE ′,S1 ,ρE ′,S2 , ...,ρE ′,SN ) (9)

Equation 9 teaches that if two lights (ρE and ρE ′ ) are re-
lated by three scaling factors d then the corresponding illuminant
estimates (ρEst and ρEst ′ ) are similarly related.

According to Equation 9 reproduction angular error (Equa-
tion 2) is stable against changes in the illumination. Since it is
clear that the three scaling factors d relating the two illuminants
are cancelled in Equation 2.

Clearly, this is not the case for recovery angular error and
this metric is highly affected by the changes in the illumination.

Figure 1: Box plots of recovery (top) and reproduction (bottom)
angular errors for the 30 objects in SFU dataset.

Recovery versus Reproduction Errors
We have used the grey-world [4] estimations [5] of 11 il-

luminants for 30 objects in the SFU data set [6] to illustrate the
degree of deviation of recovery errors from one illuminant to the
other for a single object. In the SFU dataset the same object is
captured under 11 different lights. The box plots in Figure 1 show
the range of reproduction and recovery angular errors for the 30
objects in SFU dataset. We can see the range of errors according
to recovery angular error (top box plot) is much wider than the
range of reproduction angular errors (bottom box plot).

We also calculate the standard deviation of the recovery er-
ror per object and the per object standard deviation for the repro-
duction error. We plot (for all 30 objects) the standard deviation
of recovery against reproduction standard deviations in Figure 2.
Clearly, the reproduction error is much more stable than the re-
covery error.

Figure 2: Standard deviation of recovery and reproduction angu-
lar errors for the 30 objects in the SFU dataset.

Correlation between Reproduction and Re-
covery Angular Errors

In our first experiment, we study the correlation of the two
metrics for the SFU data set [6] (multiple objects each being
viewed under multiple lights) for a range of algorithms. Our ex-
pectation here is that, recovery and reproduction errors while cor-
related, this correlation will be less for a data set where the same
object is viewed under multiple lights.

The second correlation is tested for the Gehler colour
checker data set [7] which comprises a wide variety of scenes
viewed under a single light.

Similar scenes with different illuminants
The SFU set [6] of 321 images is one of the benchmark

datasets used in color constancy. The dataset consists of 30 dif-
ferent sets of objects. Images are captured by the Sony DXC-930
CCD camera [6] with respect to a large range of different illumi-
nants (10 to 11 types of illuminants). Figure 3 shows an example
of the same object being captured under different illuminations.

Now, for each image the illuminant is estimated using six
algorithms [4, 8, 9, 10] (see first column of Table 1). We assess
the correlation of the algorithms using both the recovery and re-
production angular errors. In Table 1, we tabulate Pearson’s r



Figure 3: Correlation of reproduction and recovery angular errors for 1st grey-edge (p-norm = 3, σ = 3) algorithm [8] applied on a set of
images in the SFU dataset [6]. The number on the plot shows the Pearsons r correlation value between the two errors. The images are not
color corrected.

coefficient of correlation [11]. A correlation of 1 means the er-
rors would be proportional to one another, 0 no correlation and
-1 maximum negative correlation. Interestingly, for the six algo-
rithms tested there is a low correlation between the reproduction
and recovery angular errors.

In Figure 3 the plot of correlation between the two errors for
the 1st grey-edge algorithm [8] can be seen. As you can see the
error values are highly uncorrelated. As expected the reproduc-
tion error is stable but for given fairly constant reproduction error
the recovery error varies widely.

Table 1: Results of Pearson’s r correlation test for the repro-
duction and recovery errors for several algorithms on a set
images from the SFU dataset [6].

Algorithm Pearson’s r
1st grey-edge (p = 3,σ = 3) [8] 0.19
2nd grey-edge (p = 4,σ = 2) [8] 0.04
grey-world [4] 0.55
Shades of grey (p = 6) [9] 0.09
Edge gamut mapping (σ = 7) [10] 0.29
Pixel gamut mapping (σ = 8) [10] 0.21

Diverse scenes
The Gehler-Shi dataset [7] of 568 images comprises many

individual scenes viewed under many lights (the same scene is not
viewed under more than one light). In Figure 4 we show a few of
different scenes. On the right side of Figure 4 the reproduction
and recovery angular errors for the 1st grey-edge algorithm for
the Gehler-Shi dataset is shown.

In Table 2 the Pearson’s r values is reported for a group of
algorithms on all the images of Gehler-Shi dataset [7]. The corre-
lation values are almost close to one for all the algorithms. This is
a significant result as it shows that on average for typical viewing
conditions the legacy recovery error can be used to rank algo-

rithms. The flaw in its formulation while important and worth
remedying does not invalidate the historical development, and
ranking of algorithms using datasets such as Gehler-Shi and the
recovery errors. That is the best algorithms today are better than
those of five years ago and these in turn are better than the vener-
able grey-world [4] and MaxRGB [12] algorithms.

Table 2: Results of Pearson’s r correlation test for the repro-
duction and recovery errors for several algorithms on all the
images of Gehler-Shi dataset [7]

Algorithm Pearson’s r
1st grey-edge (p = 3,σ = 3) [8] 0.95
2nd grey-edge (p = 5,σ = 6) [8] 0.95
grey-world [4] 0.99
Shades of grey (p = 5) [9] 0.98
MaxRGB [12] 0.97
Pixel gamut mapping (σ = 5) [10, 13] 0.99
Edge gamut mapping (σ = 3) [10] 0.96

However, it is also important to note that the correlation
statistic is a ‘broad brush’. While the correlation analysis gives
us confidence that the results in the literature (reporting the rela-
tive performance of algorithms) are in good order, [1] showed that
there are small changes in the overall rankings when the two error
metrics are used.

Discussion
One might also be interested in knowing whether the algo-

rithms could be ranked differently by reproduction and recovery
angular errors. It is shown in [1] that while the rankings of algo-
rithms reported in the literature remain broadly similar, the new
metric (reproduction angular error) can change the ranks of lo-
cal pairs of algorithms. For instance pixel-based and edge-based
gamut mapping [10] are assigned different ranks by the two met-
rics (see Table 3). Further the Kendall’s rank correlation test [11]



Figure 4: Correlation of reproduction and recovery angular errors for 1st grey-edge (3, 3) algorithm applied on a set of images in Gehler-
Shi dataset[7]. The number on the plot shows the Pearson’s r correlation value between the two errors. The images are not color corrected.

the authors in [1] showed that in some cases this switching in
ranking is statistically significant.

Table 3 shows the recovery and reproduction angular errors
for a set of algorithms applied on the SFU dataset. We calculated
the median errors over all 321 images of SFU dataset. You can
see that in several cases the rankings of algorithms have switched
(ranks in bold).

Table 3: Median recovery and reproduction errors of sev-
eral colour constancy algorithms for the SFU dataset [6]. The
changed ranks are in bold.

Recovery Reproduction
Algorithm Median Rank Median Rank
grey-world [4] 7.0◦ 10 7.49◦ 10
MaxRGB [12] 6.5◦ 9 7.44◦ 9
Shades of grey [9] 3.7◦ 8 3.94◦ 7
1st grey-edge [8] 3.2◦ 6 3.59◦ 5
2nd grey-edge [8] 2.7◦ 4 3.04◦ 4
Pixel-based gamut
[10, 13]

2.27◦ 2 2.83◦ 3

Edge-based gamut
[10]

2.28◦ 3 2.7◦ 2

Intersection-based
gamut [10]

2.09◦ 1 2.48◦ 1

Heavy tailed-based
[14]

3.45◦ 7 4.11◦ 8

Weighted grey-
edge [15]

3.09◦ 5 3.62◦ 6

Table 4 shows the same results for the 568 images of Gehler-
Shi dataset [7]. Compared to the results for the SFU images
(where the same scenes are captured under different illumina-
tions), there are less switches in the rankings of algorithms for
Gehler-Shi dataset.

For the algorithms whose ranks have changes in Table 3 the
Spearsman’s correlation coefficient is calculated as 0.85. The
Spearman’s coefficient being close to one shows a positive rela-

tionship between the rankings of algorithms by the two metrics.
However, Spearsman’s test is not suitable for quantifying the dis-
crepancy between the number of concordant and discordant pairs.
Kendall’s test [11] is often used for such a comparison. The test
is performed on the algorithms whose ranks have changed in Ta-
ble 3 which is discussed by Finlayson and Zakizadeh in [1]. The
Kendall’s test result shows a significance switch in the rankings
of algorithms for the SFU dataset.

We can infer from the reproduction and recovery errors in
Tables 3 that for a set of images of similar scenes with diverse
illuminations the legacy recovery angular error can result in dif-
ferent evaluation of algorithms.

Table 4: Median recovery and reproduction errors of several
colour constancy algorithms for the Gehler-Shi dataset [7].
The changed ranks are in bold.

Recovery Reproduction
Algorithm Median Rank Median Rank
grey-world [4] 6.3◦ 10 6.8◦ 10
MaxRGB [12] 5.7◦ 9 6.5◦ 9
Shades of grey [9] 3.9◦ 5 4.4◦ 5
1st grey-edge [8] 4.3◦ 6 4.9◦ 7
2nd grey-edge [8] 4.4◦ 7 4.8◦ 6
Pixel-based gamut
[10, 13]

2.3◦ 1 2.7◦ 1

Edge-based gamut
[10]

5.0◦ 8 5.8◦ 8

Intersection-based
gamut [10]

2.3◦ 1 2.7◦ 1

Heavy tailed-based
[14]

2.96◦ 4 3.47◦ 3

Cart-based selec-
tion [16]

2.91◦ 3 3.48◦ 4



Conclusion
In this paper we studied the correlation between the repro-

duction and recovery errors for a given algorithm on images of
similar and diverse scenes. We noticed the low correlation be-
tween the errors in case of images of the same scene captured
under different illuminations. Such result was expected as the
premise of reproduction error is that it is stable to changes of il-
luminant compared to recovery error which is more dependent on
the illuminant. On the other hand, we observed when the scenes
are diverse the results of reproduction and recovery metrics for
the same algorithm are very much correlated. This observation
is important as it establishes that the development of illuminant
estimation algorithms is in good order. However, since we expect
to capture images of same scene as the illumination changes, we
recommend the adoption of reproduction error.
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